Barycentric-Remez algorithms for best polynomial approximation in the chebfun system

نویسندگان

  • Ricardo Pachón
  • L. N. TREFETHEN
چکیده

Variants of the Remez algorithm for best polynomial approximation are presented based on two key features: the use of the barycentric interpolation formula to represent the trial polynomials, and the setting of the whole computation in the chebfun system, where the determination of local and global extrema at each iterative step becomes trivial. The new algorithms make it a routine matter to compute approximations of degrees in the hundreds, and as an example, we report approximation of |x| up to degree 10,000. Since barycentric formulas can also represent rational functions, the algorithms we introduce may also point the way to new methods for computing best rational approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Minimax Approximation via Adaptive Barycentric Representations

Computing rational minimax approximations can be very challenging when there are singularities on or near the interval of approximation — precisely the case where rational functions outperform polynomials by a landslide. We show that far more robust algorithms than previously available can be developed by making use of rational barycentric representations whose support points are chosen in an a...

متن کامل

Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials

Barycentric interpolation is arguably the method of choice for numerical polynomial interpolation. The polynomial interpolant is expressed in terms of function values using the so-called barycentric weights, which depend on the interpolation points. Few explicit formulae for these barycentric weights are known. In [H. Wang and S. Xiang, Math. Comp., 81 (2012), 861–877], the authors have shown t...

متن کامل

A robust implementation of the Carathéodory-Fejér method for rational approximation

Best rational approximations are notoriously difficult to compute. However, the difference between the best rational approximation to a function and its Carathéodory-Fejér (CF) approximation is often so small as to be negligible in practice, while CF approximations are far easier to compute. We present a robust and fast implementation of this method in the Chebfun software system and illustrate...

متن کامل

A Fast Algorithm for Linear Complex Chebyshev Approximations

We propose a new algorithm for finding best minimax polynomial approximations in the complex plane. The algorithm is the first satisfactory generalization of the well-known Remez algorithm for real approximations. Among all available algorithms, ours is the only quadratically convergent one. Numerical examples are presented to illustrate rapid convergence.

متن کامل

Extension of Chebfun to Periodic Functions

Algorithms and underlying mathematics are presented for numerical computation with periodic functions via approximations to machine precision by trigonometric polynomials, including the solution of linear and nonlinear periodic ordinary differential equations. Differences from the nonperiodic Chebyshev case are highlighted.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008